SURFACE WAVES AND STABILITY OF FREE
SURFACE OF A MAGNETIZABLE LIQUID

I. E, Tarapov UDC 538.4

Linear theory of surface waves in a magnetizable liquid is examined. A stability criterion
for a plane-free surface of a magnetizable liquid is studied for an arbitrary magnetization
law.

The theory of surface waves in its classical formulation [1] leads to nonstandard, primarily nonlinear
problems, Linearization of these problems is usually associated with studies of the stability of free fluid
surfaces. Interest has arisen recently in this question because of the application of fluids that can be sub-
stantially magnetized or polarized in an electromagnetic field [2-5].

In this article, potential wave motions on the surface of an incompressible fluid which may be non-
homogeneously and isotropically magnetized in an applied magnetic field, are considered. We will also
assume that this fluid is inviscid and does not conduct a current while its temperature remains invariant,
so that the magnetization function of the medium M can be written in the form

M =M (p, H) = H/H) M (p, H)

Suppose the magnetized fluid in the undisturbed state occupies a half-space y < 0 while a medium is
found in the region y > 0 whose density and magnetizationmaybe set equal to 0.

The initial system of equations for describing surface waves consists in eddyless motion equations
of an incompressible, nonconducting magnetized liquid [6]
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and at conditions which must be satisfied on the free surface y = F(x, y, z). These conditions have the form

Fy+VFEv- =1, 2)
P~ YE — pt = — 2x (M-n)? + a (R, 4 R,™Y) ()
B--n =H*.n, H,” = H! 4)

Here,n = {=F (1 +F 2+ F 712 1 +F 2+ P12~ F, (1+F2+ FZZ)"i/Z} is the normal basis
vector to the free surface directed towards y > F, @ is the surface tension coefficient, and Ry and Ry are
the principal radii of curvature of the free surface,

_aF _OF __oF
B:H+4HNI(9,H), ¢ FJ\:—%. Fzz—éz—
the superscript minuses denoting the values of the corresponding variables at the surface from the direc-
tion of the liquid, while the pluses denote these values at the surface from the nonmagnetic medium

occupying the regiony > F,
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Condition (2) denotes motion continuity of the liquid on the free surface, condition (3) asserts that
the normal stresses on both sides of the free surface are equal, while condition (4) insuresthat the normal
components of magnetic induction and the tangential components of the magnetic field are equal.

We will moreover assume that
H,L |y=+oe = Hm H_ ‘y:—oo =H, = (Hox, Hoyll;l, H@z) (5)

at a distance from the free surface, where Hy is the applied field, and Hy is the value of the medium mag-
netic permeability at a distance from the free surface.

Thus H_.—He=H; is the field induced in the magnetic due to its properties as a "liquid magnet"
while H+ —H, is the field induced in the space over the elementary magnet., Our problem is an example
of the motion problem for a magnetized medium in which neglecting the induced field leads to known
incorrect results,

We find by introducing the velocity potential @(t, x, y, z) (v = A¢) and the magnetic field potential
&, x,y, z) H=V®), using Eq. (1), equations for ¥and & and the motion-equation integral in the form
Ap =0, AD = —4ndiv {MVD /|VD ]} (6)
@+ Yo (92 + 0 + @) + gy + (0 +9®) /p— (1/p) MdH = C (?)

Writing the integral (6) for points of the free surface and eliminating p + P ) from it by means of
condition (3) we obtain a system of equations for determining the functions Ft, x, z), ¢4, x, vy, z), ®+(, x,
y, z), and ®_{t, x, y, z) in the following form:

In the regiony > F(t, x, z)

AD, =0, V®,|y—ie = H, )
In the regiony < Ft, x, z)
Ap =0, V@|y——e =0 (8)
AD_ = —badiv (MYD_/|VD_J}, VO_|,——w = Ha (9)
We have the following conditions on the surface y = F(t, x, z) by virtue of Eqgs. (2), (4), and (6)
Fy o= Py — Foo, — Fo7 (10)
O, (1 + 4aM- | HY) — @, =F (O (1-+-4aM~/H)— D} + FAD,~ (1 + 4aM- | H™) — ©.%) (11)
O, — OF + Fo (D — D) =0, O — Dt F, (B —D%) =0 (12)
o + Yoo + (@7 + @)% + 8F + = (BT + Ry —
— 2w — 2 (2 (@, — O F— 0 P4 FA4FA=0 (13)

=0z F,z), Ot=d, (4 F,z), H- =|VD-|
where the literal subscripts of ¢, &, and F denote partial derivatives.

Our problem in this most complete form contains a nonlinearity not only in the boundary condition,
but also in Eq. (9) for the magnetic field, the form of the surface on which the boundary conditions are
imposed also obeying the definition. These facts cause significant mathematical difficulties.

Below, we shall consider a linear theory of surface waves in a magnetizable liquid, i.e., we will
assume that the wave amplitude is sufficiently small in comparison with its length 27/k, so that the values
IkFI, |FX| ,and |F,| are less than unity, We linearize Eq. (9) and the boundary conditions (10)-(13),
discarding from it terms of the second order of smallness, assuming, moreover, that the values of the
induced magnetic field | V&_—Heoland| V'I>+"H0| are of the same order as |kF|.

If we take into account the fact that
4nM | H =~ 4nM o | Hy + PotoHe (VO — Hy)
4 aM M
Moo = 1+ 4M o | Hooy  Coo = m{(WL_WZI
we find from Eqgs. (7)-(13) the linear equations
AD, =0, AD. = —coHor V(Ho VD), Ap=0 1 (14)

with the same conditions at infinity and with linearized conditions on the surface y = F
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Fy =gy~ (15)
Yoo {D + COOHOy fo e - (VO- — Ho)}— Oyt — (oo — 1) (FoHy + FH,) =0

O — O + FHyy(po™ —1) =0, 07— @ + FHy, (R —1) =0 (16)
(o — D2 Hyy o (B — 1) (o T+ CoHlgy) _
P + gF - %(Fm‘ -+ Fzz) - “'—4W0J((Dy - Hoxe— HDze) b 43139[.1.00 oy Hw - (VCD - Hoo) =0

We may exclude the form of the surface from the boundary conditions by means of Eq. (15) if the
remaining conditions are differentiated with respect to time. We obtain, in place of Egs. (15) and (16),

Koo {cht_ + cocHoyM;l (Hco'vq)z_)} e (Dyt+ — (s — 1)((Py.xH0x + (PyzHOz) =0
cDxt— - cDxt+ + chxHoy (”'00_1 - 1) = 0’ (th“ - cht+ + qDyzHO.l/ (”w—l - 1) = O (17)

o P — 1) HOy —
Pre+ 8Py — ?(q’uxx + Qyzz) — mppl (@yt—HoxPry— HozPry) —

(p'oo/—1)(”60+cwH(2]y) H R =Y -
e (He - y@7) =0

Forward surface waves are described by solutions of Eq. (14) of the form
D, =ctexp{— ky + i (k'r) + iot} + H;-r
Q_ =cexp{ky +ik-r)+iot} +Her
¢ = (lo / k) exp {ky + { (k-1) + it} (18)
k= (kxv k), k= kaz + &

X Va-— e H H, 2 Ho -k
FT o, 0 AT A=

These functions satisfy Eqs, (14) and the boundary conditions at infinity for any ¢t e, and wk > 0,
A > 0),

The constants ¢ and ¢~ and the phase velocity A = w/k of the waves are determined from conditions
(17) by substituting (18) in them, that is
"= (b — 1) (Hay + iHl) (1 + peo VA
¢t =" — Hyy (1 — pe™) _ (19)
o BT VT
drp (1+p,, V 4)

where Ay = (g/k + Olk/p)i/2 is the phase velocity in the absence of a magnetic field.
The energy-flow velocity of these forward waves is given by

d A 1 ke 3
Hgou (p‘oc — 1) VZ

(Hoo —— 1)2Hk2
T dmp (Lt VA 4p (1 +py, V A)

An analysis of Egs, (18)-(20) allows us to conclude that

2 —

2
)“I\' ] n T

1. Surface waves in a medium magnetized according to an arbitrary law are accompanied by trans-
verse waves with decrement k'; they exist only when i = #(H, p) since when Ut = [ (p) (linear magnetization)
Ce vanishes and the decrement p' becomes real.

We have ce < 0 for nonlinear magnetization (8M/3H > 0, 82M/0H? < 0), so that the real part of the
decrement is greater in normal field and lesser in a tangential field than in a medium governed by a linear
magnetization law., Consequently, the more expressed is the magnetization nonlinearity in a normal field,
the narrower will be the surface layer where the disturbances are concentrated; in a tangential field, the
picture is the opposite.

2. A field tangent to an undisturbed flat surface increases the phase velocity of the surface wave if
Hy = (Hy +k)/k+# 0, i.e., if this field is not perpendicular to the ave front; in this case, the energy-flow
wave velocity also increases (if we neglect the influence of surface tension), so that the energy that can be
transmitted by the waves through a vertical surface is greater than in a nonmagnetic medium.

3. A normal field decreases the phase velocity of the surface waves and (if we neglect surface ten-
sion) the energy-flow velocity.

467



4. A normal field destabilizes the free surface of a magnetized medium., When A becomes imaginary
independent of the magnitude and direction of the wave vector k, the free surface begins to become unstable,
It follows from Eq. (19) that waves perpendicular to the tangential component of the applied field, i.e., when
Hy = 0, are the most dangerous from the standpoint of the breakdown of stability of the free surface., In
this case the surface can be considered stable only when

8, Vage (L +p, VA
VAp,—12

Hey < 1)

The de-stabilization effect of a free surface by a normal field has been confirmed by 2 number of
experiments with ferromagnetic liquids [2, 4].

If the surface y = 0 is an interface hetween two media with densities p* and p~isotropically magnetized
according to the laws # = W (pt+, Ht), an analysis similar to the one presented above leads to a stability
criterion for this interface,

Hiy < [Baplps Vg (o — p) (uh V AT + po VA [V AA (G — pipt

+ Mt
AT =1 o (HEP =1 ("’M ) ==
+ek =142 {aHM H;}
Here the medium with the minus superscript is below the medium with the plus superscript.
In fields Hy,, in which a flat free surface is unstable, there exists an equilibrium form of a free
surface with a periodic structure that little differs from y = 0. Experiments with a ferromagnetic liquid
[4] have demonstrated the presence of such a wavy free surface in sufficiently large normal fields.

Let us determine the form of such a free surface.

For the sake of simplicity, we will assume that we are dealing with a paramagnetic liquid (M/H =
i —1)/47 = const) and that the applied field lies in the xy plane. Then if the free surface y = F(x), which
little differs from the plane y = 0 is in equilibrium, it will follow from Eq. (16) that we must have

O — O = (@ —1) Hys, q>-—®++(ﬁ-1—-1)FxH°y=0

(I"‘ - 1)2 Ho'y - —1
——4-11:'5”_— ((I) - HO.X‘. x) 4“P

22)

¢F — P (Lo 0+ Ho0,7) =0

where the function ®x, y) satisfies the equations
ADy =0 (23)
We will find the solutions of Eq. (23) in the form

O, = e (a* sin kx + b* cos kz) -+ Howx + Hyyy (24)
O_ = e (a~ sin kx + b+ cos kx) + Hyx + Hoyyp™?

We find if we satisfy the boundary conditions (22) that

k=1Fky -V k2 — ogo, at = Aga~ — Bob™, bt = Bya~ 4 A¢b™
F@Ey=p{p—1 Hoy}' {(a= — a*) sinkz + (b — b*) cos kx}
(}“"—1) (Hoy_'p‘ ) _ l"‘H(?x_' H%y (25)

J =
0 a0 T Mmoo,

wi, ou
lLH

0 =
01I

This solution, which satisfies all the boundary conditions for arbitrary b™, and a™ will exist if

(b — 1) (Hoy? — pHo2) > 8ap (n -+ 1) Vpger (26)
In this case, the phase velocity, A, as follows from Eq. (19), becomes imaginary for any k, and con-
sequently, the flat surface y = 0 will be unstable.
The constants a~ and b~ occurring in the function Eq. (25) remain undefined in this approximation of
an unbounded liquid. If we assume that the liquid is within a sufficiently long and deep contamer (the length

L and its depth are significantly greater than the wavelength, i.e.,they are on the order of k™ ) and the angle
of contact of its walls with the liquid is equal to 8, the constants a- and b~ will be determined from the

conditions
Folomo = —ctg 8, F |, =ctg0
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In this case, we have from Eq. (25)
F(z) = —ktctg 8 {sin kz + ctg (KL / 2) cos kz}
where kL/2 # 2m (0 = 0, +1, ...), since an independent resonance instability of the surface begins,

In the case of a saturated elementary magnet (M = M; = const) the criterion (26) has the form
m} (Hgyz—HOXZ)Z 167 Y@ga, when 47 Mg/ Hy =m,<<1,
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